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Abstract
A Bayesian network is a probabilistic graphical model that consists of a directed acyclic graph
(DAG), where each node is a random variable and attached to each node is a conditional probability
distribution (CPD). A Bayesian network can be learned from data using the well-known score-and-
search approach, and within this approach a key consideration is how to simultaneously learn the
global structure in the form of the underlying DAG and the local structure in the CPDs. Several
useful forms of local structure have been identified in the literature but thus far the score-and-search
approach has only been extended to handle local structure in form of context-specific independence.
In this paper, we show how to extend the score-and-search approach to the important and widely
useful case of noisy-OR relations. We provide an effective gradient descent algorithm to score a
candidate noisy-OR using the widely used BIC score and we provide pruning rules that allow the
search to successfully scale to medium sized networks. Our empirical results provide evidence for
the success of our approach to learning Bayesian networks that incorporate noisy-OR relations.

Keywords: Bayesian networks; structure learning; causal noisy-OR.

1. Introduction

Bayesian networks (BNs) are widely used probabilistic graphical models with applications in knowl-
edge discovery, decision support, and prediction (Darwiche, 2009; Koller and Friedman, 2009). A
BN can be learned from data using the well-known score-and-search approach, where a scoring
function is used to evaluate the fit of a proposed BN to the data in the space of directed acyclic
graphs (DAGs). Current implementations of this approach such as (Yuan et al., 2011), (Bartlett and
Cussens, 2013), and (van Beek and Hoffmann, 2015) consider only conditional probability tables
(CPTs) as representations for the underlying conditional probability distributions (CPDs) for dis-
crete variables. However, the size of the CPT for a variable grows exponentially as the number of
parents increases. For example, the CPT of a binary child node with n binary parents requires 2n+1

probabilities. This presents a practical difficulty in parameter estimation and inference and has mo-
tivated many structured representations for CPDs that exploit the relationship between a child and
its parents and aim at reducing model complexity.

A widely used local structure is the noisy-OR relation (Good, 1961; Pearl, 1988) and its gener-
alizations such as leaky noisy-OR (Henrion, 1987) and noisy-MAX (Dı́ez, 1993). These relations
model the CPD over causes (parents) and effects (children). The noisy-OR assumes a form of causal
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independence (CI) and allows one to specify a CPT with just n parameters instead of 2n+1. Zhang
and Poole (1996) derived variable elimination under CI and demonstrated the advantage of CI in
inference. Besides CI, Boutilier et al. (1996) proposed a decision tree model that captures context-
specific independence (CSI). Later, Chickering et al. (1997) extended the tree structure to decision
graphs that encode equality constraints and Poole and Zhang (2003) derived a version of variable
elimination under CSI. Despite showing advantages in inference, these studies—with the excep-
tion of Chickering et al. (1997)—only consider the local structure of CPDs while assuming some
fixed global structure; i.e., the underlying DAG for the BN is fixed and some or all of the CPTs are
replaced with locally structured representations.

However, when some or all of the CPTs within some fixed global structure are replaced by
locally structured representations with reduced complexity, the existing DAG structure is often not
optimal or appropriate for the new representations anymore. Consider the Bayesian information
criterion (BIC) that consists of the log likelihood of the data being generated by the model and a
penalty for model complexity. The structured CPDs are likely to reduce the likelihood due to the
so-called compression error (Xiang and Baird, 2018; Zagorecki and Druzdzel, 2013), but they also
have a smaller penalty as a result of using fewer parameters. These changes open up the opportunity
for some alternative global structures to have better scores. Ideally, the learning algorithm should be
able to choose, for example, between a CPD represented as a CPT with a smaller number of parents,
and a CPD approximated as a noisy-OR with a larger number of parents.

Assuming a fixed global structure may also lead to inaccuracies when assessing the effect of us-
ing structured representations. Compression error only measures the ability of a new representation
to reproduce the original CPT, but that is not the goal of BNs. For example, the CPD modeled by
noisy-OR may be different from the CPD by CPT, but with a different structure the former might be
a better fit for the distribution of the data. Similarly, measuring inference error with a fixed structure
is misleading. Failing to consider new structures to better accommodate alternative representations
makes the false impression that we trade some posterior accuracy for reduced complexity, although
in practice the posterior accuracy may even be improved with proper structure learning.

Friedman and Goldszmidt (1998) are the first to incorporate local structures in Bayesian network
structure learning (BNSL) with the score-and-search approach. They show that using structured
representations in hill-climbing allows the learning algorithm to explore more complex networks
and thus avoids inferring incorrect conditional independence relations. The observation is also
supported by Talvitie et al. (2019) in an exact search to find the optimal BN using a tree structure.
Their experiments, albeit with some explicit structural constraints on the underlying DAG, suggest
that structured CPDs can help the search algorithm find correct BNs with fewer samples, especially
on real-world datasets. However, they also find that for some datasets CPT can still perform better.
The discrepancy is likely attributed to the fact that all proposed structured representations are used
separately as the sole representation for the CPDs. If the structured representations are compared
with CPTs and are only used when appropriate, they can then better help the search algorithm to
find the correct structure and maintain the complexity advantage in inference.

In this paper, we propose the first score-and-search approach for learning Bayesian networks
with both CPT and noisy-OR relations as possible representations for CPDs. Importantly, we simul-
taneously learn both the global structure in the form of the underlying DAG and the local structure
in the CPDs, we place no a priori constraints on the global structure, and we exactly determine all
networks within a given factor of optimal. Our approach has two primary advantages. First, our
approach only replaces a CPT with a noisy-OR relation when it is appropriate. Converting an ar-
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Figure 1: Example Bayesian network: Each variable has the state space {0, 1}. Consider the parent
set of V6, Π6 = {V2, V3} The state space of Π6 is ΩΠ6 = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}.
and rΠ6 = 4.

bitrary proportion of CPTs to structured representations can lead to significant degradation of the
expressive power of the model, and it is difficult to determine the optimal proportion a priori. Our
approach controls the degradation by specifying a Bayes factor (BF) (Kass and Raftery, 1995) that
measures how far a BN can deviate from the optimal network, and so only near-optimal networks
with both CPTs and noisy-OR relations are learned in a principled manner. Second, our approach
can scale to BNs of moderate sizes. Even local structure modelling with structured representations
such as (Xiang, 2019) suffers from a large search space. Our approach, on the other hand, can ef-
fectively prune most candidate parent sets of a variable by leveraging the results from learning BNs
with CPTs given a BF (Liao et al., 2019). We empirically demonstrate that our approach can learn
these mixed BNs in a principled manner that takes advantage of a reduced complexity.

2. Background

In this section, we review Bayesian networks (Koller and Friedman, 2009; Darwiche, 2009), noisy-
OR relations (Good, 1961; Pearl, 1988) and the BIC scoring function (Lam and Bacchus, 1994;
Schwarz, 1978).

2.1 Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that consists of a labeled directed
acyclic graph (DAG), G = (V,E) in which the nodes V = {V1, . . . , Vn} correspond to random
variables, the edges E represent direct influence of one random variable on another, and each node
Vi is labeled with a conditional probability distribution P (Vi | Πi) that specifies the dependence
of the variable Vi on its set of parents Πi in the DAG. A BN can alternatively be viewed as a
factorized representation of the joint probability distribution over the random variables and as an
encoding of the Markov condition on the nodes; i.e., given its parents, every variable is conditionally
independent of its non-descendants.

In this paper, we assume that each random variable Vi is binary. Each Πi has state space of
a set of candidate instantiations of the nodes in Πi, ΩΠi = {πi1, . . . , πirΠi

}. We use rΠi = 2|Πi|

to refer to the number of possible instantiations of the parent set Πi of Vi (see Figure 1). The set
θ = {θijk} for all i = {1, . . . , n}, j = {1, . . . , rΠi} and k = {0, 1} represents parameter estimates
inG obtained from a dataset, where each θijk estimates the conditional probability P (Vi = k | Πi =
πij). Given a node Vi and a parent set Πi, we define the set θi :=

{
θijk | j ∈ {1, . . . , rΠi}, k ∈

{0, 1}
}

. We refer to θi as the full CPT of node i.
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Figure 2: Causal structure for a Bayesian network with a noisy-OR relation, where the set of causes
Πi := {Vi1, . . . , Vi|Πi|} leads to effect Vi and there is a noisy-OR relation at node Vi.

The predominant method for Bayesian network structure learning (BNSL) from data is the
score-and-search method. Let G be a DAG over random variables V, and let I = {I1, . . . , IN}
be a dataset, where each instance Ii is an n-tuple that is a complete instantiation of the variables in
V. A scoring function σ(G | I) assigns a real value measuring the quality of G given the data I .
Without loss of generality, we assume that a lower score represents a better quality network struc-
ture. To simplify notation, we use σ(G) in place of σ(G | I) when the data is clear from context.
In this paper, we focus on solving the problem of ε-Bayesian Network Structure Learning (εBNSL)
(Liao et al., 2019).

Definition 1 Given a non-negative constant ε, a dataset I = {I1, . . . , IN} over random variables
V = {V1, . . . , Vn} and a scoring function σ, the ε-Bayesian Network Structure Learning (εBNSL)
problem is to find all credible networks, which are all networks that have a score σ(G) such that
OPT ≤ σ(G | I) ≤ OPT + ε, where OPT is the score of the optimal Bayesian network.

It has been shown in (Liao et al., 2019) that a good choice for ε is logBF . By specifying the
constant ε in terms of a Bayes factor, we can control the level of tolerance for network degradation
and learn all near-optimal networks with both CPTs and noisy-OR relations as best determined by
the trade-off between the fit with the data and the complexity of the model.

2.2 BIC/MDL Scoring Function

In this work, we focus on the Bayesian information criterion (BIC) scoring function. As the BIC
function is decomposable, when the θi is given we can associate a score to a candidate parent set Πi

of Vi as follows,
BIC : σ(Πi) = −L(θi) + t(Πi) · w, (1)

where the formula consists of a term measuring the likelihood of the candidate parent set given
the data and a penalty term for the number of parameters needed to specify the full CPT for the
candidate parent set. Here, L(θi) =

∑rΠi
j=1

∑
k∈{0,1} nijk log θijk, nijk is the number of instances in

dataset I where Vi = k and Π = πij co-occur, and t(Πi) = 2|Πi|. The penalty term is weighted by
w = log(N)/2 where N is the number of instances in dataset I . Note that σ(G) =

∑n
i=1 σ(Πi).

We use the natural logarithm throughout the paper.

2.3 Patterns for CPTs: Noisy-OR

With the noisy-OR relation one assumes that there are a set of causes Πi := {Vi1, . . . , Vi|Πi|}
leading to an effect Vi, where Vi, Vij ∈ V for all j ∈ {1, ...|Πi|} and Vi /∈ Πi (see Figure 2). Each
cause Vij ∈ Πi is either present or absent, and each Vij in isolation is likely to cause Vi and the
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likelihood is not diminished if more than one cause is present. Further, one assumes that all possible
causes are given and when all causes are absent, the effect is absent. Finally, one assumes that the
mechanism or reason that inhibits a Vij from causing Vi is independent of the mechanism or reason
that inhibits a Vij′ , j′ 6= j, from causing Vi.

For a node Vi and parent set Πi, a noisy-OR relation specifies a CPT using |Πi| parameters,
qi = qi1, . . . , qi|Πi|, one for each parent, where qij is the probability that Vi is false given that Vij is
true and all of the other parents are false,

P (Vi = 0 | Vij = 1, Vij′ = 0[∀j′,j′ 6=j]) = qij .

From these parameters, the full CPT representation of size 2n+1 can be generated using,

φij0 =

{∏
j∈Tx

qij if Tx 6= {}
1 otherwise,

(2)

where Tx = {j | Vij = 1}. The last condition (when Tx is empty) corresponds to the assumptions
that all possible causes are given and that when all causes are absent, the effect is absent; i.e.,
P (Vi = 0 | Vi1 = 0, . . . , Vi|Πi| = 0) = 1. Of course, φij1 = 1 − φij0. The set φi :=

{
φijk | j ∈

{1, . . . , rΠi}, k ∈ {0, 1}
}

is referred to as the noisy-OR CPT of node i.
The above assumptions are not as restrictive as may first appear. One can always introduce

an additional random variable Vi0 that is a parent of Vi but itself has no parents. The variable Vi0
represents all of the other reasons that could cause Vi to occur. The node Vi0 and the prior probability
P (Vi0) are referred to as a leak node and the leak probability, respectively. In this work we assume
that all the causes are known.

3. Our Solution

In this section, we present our score-and-search approach for learning all Bayesian networks, given
local scores, that are within a given factor ε of optimal, where the networks can contain both full
CPT and noisy-OR relations as possible representations for the CPDs. In general, a score-and-search
approach scores candidate parent sets for the nodes in the network and searches for the choice of a
parent set, one for each node, that leads to the best overall score while ensuring that the network is
acyclic. Before presenting our overall approach for solving εBNSL (Section 3.3), we first describe
an effective gradient descent algorithm to score a candidate noisy-OR relation using the widely
used BIC score (Section 3.1) and pruning rules that allow the search to scale to larger networks
(Section 3.2).

3.1 BIC Score for Noisy-OR Relations

The BIC score consists of a maximum likelihood term and a penalty term. We present a gradient
descent algorithm that is based on minimizing a KL divergence as it is known that minimizing the
KL divergence results in maximizing the likelihood (see, e.g., Murphy (2012)). Recall that the
elements of θi are conditional probabilities computed from the dataset I . Given a node Vi, we must
compute maximum likelihood estimates for the noisy-OR CPT φi for every candidate parent set Πi,
such that the conditional KL divergence between the full CPT θi and the resulting noisy-OR CPT φi
that is determined by the qi (see Equation 2), is minimized. Note that the KL divergence between
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two conditional probability distributions, P (A|B) and Q(A|B) is given by,

DKL(P (A|B) || Q(A|B)) =
∑
b∈B

P (B = b)
∑
a∈A

P (A = a|B = b) log
P (A = a|B = b)

Q(A = a|B = b)
.

We note that an alternative approach to estimate noisy-OR parameters is to maximize the log-
likelihood using the expectation-maximization (EM) technique, which was derived in Dempster
et al. (1977) and applied to noisy-OR in Vomlel (2006). We perform an experimental comparison
of the two approaches in Section 4.

To derive our gradient descent algorithm, we begin with the definition of KL divergence for the
two conditional probability distributions, θi and φi, and rewrite it into a more convenient form:

DKL(θi || φi)
0
=

rΠi∑
j=1

P (πij)
∑

k∈{0,1}

θijk log
θijk
φijk

1
=

rΠi∑
j=1

nij
N

∑
k∈{0,1}

θijk log
θijk
φijk

2
=

1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log
θijk
φijk

3
=

1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log θijk −
1

N

rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log φijk,

where N is the number of instances in our dataset. To find φi such that DKL(θi || φi) is minimized,
note that the first term in Step 3 is constant. So, we must determine,

argmin
qi

DKL(θi || φi) = −
rΠi∑
j=1

∑
k∈{0,1}

nijk · θijk log φijk,

where the qi that minimizes the KL divergence are the maximum likelihood estimates for φi that
are determined by the qi (Equation 2). The penalty term in the BIC score can be computed in
constant time; specifically, the number of parents in the candidate parent set. Thus, fitting these
noisy-OR parameters gives us the BIC score for the noisy-OR for a candidate parent set. To find
these noisy-OR parameters, we use Algorithm 1 which performs gradient descent for the derivative,

∆qi

KL =
d

dqi

rΠi∑
j=1

∑
k∈{0,1}

nijk · log φijk. (3)

We start with an initial guess for the set of noisy-OR parameters qi and evaluate term ∆qi

KL for these
values (Equation 3). The initial guess uses hot starts in that the solution for a smaller candidate
parent set is used as the starting point when estimating the parameters for a candidate set that is a
superset. We perform gradient descent over qi, where each step update is found by a simple geo-
metric line search algorithm (see Algorithm 1). Geometric line search is a backtracking line search
procedure, where we first choose a descent direction and then determine the maximum amount to
move along that direction.
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Algorithm 1 Computing Noisy-OR Parameters for a Candidate Parent Set
Input: Node Vi, candidate set Πi, a dataset I of N instances.
Parameter: Threshold t, maximum iterations maxIter
Output: A set of noisy-OR parameters : qi = qi1, . . . , qi|Πi|

1: Initialize qi = qi1, . . . , qi|Πi| = hotstarts()
2: Initialize l = 0,mqi = qi, δ =∞
3: while l < maxIter do
4: q′i = qi

5: step = GeometricLineSearch(q′i,∆
q′
i

KL)

6: qi = q′i − step ∗∆
q′
i

KL

7: δqi = ∆qi

KL −∆
q′
i

KL

8: if δqi < δ then
9: mqi = qi

10: δ = δqi
11: if δqi < t then
12: break
13: l = l + 1
14: return mqi

3.2 Pruning Rules

To find all near-optimal BNs given an approximating factor ε for a dataset I , we propose to compute
two different sets of local scores for each node. The first set is the BIC scores when the conditional
probability distributions for the candidate parents sets are represented by full CPTs. The second
set is the BIC scores when the conditional probability distributions for the candidate parent sets are
represented by noisy-OR relations. However, computing the local scores for all nodes is quite cost
prohibitive—we would need a set of n ·2n−1 local scores for each of the two BIC scores. A solution
is to prune the search space of candidate parent sets, provided that global optimality constraints of
the full network structure are not violated. Adopting the terminology of Liao et al. (2019), we say
that a candidate parent set Πi can be safely pruned given a non-negative constant ε ∈ R+ if Πi

cannot be the parent set of Vi in any network in the set of credible networks (see Definition 1). For
computing BIC scores for full CPTs, we employ the following two pruning rules given by Liao et al.
(2019) to find all near-optimal Bayesian networks given an approximating factor ε.

Lemma 2 Given a node Vj , candidate parent sets Πj and Π′j , and some ε ∈ R+, if Πj ⊂ Π′j and
σ(Πj) + ε ≤ σ(Π′j), Π′j can be safely pruned.

Theorem 3 Given a node Vj , candidate parent sets Πj and Π′j , and some ε ∈ R+, if Πj ⊂ Π′j and
σ(Πj) − t(Π′j) + ε < 0, Π′j and all supersets of Π′j can be safely pruned if σ is the BIC scoring
function.

For computing BIC scores for noisy-OR relations, we introduce two new pruning rules.

Lemma 4 A candidate parent set Πi of a node Vi that is consistently instantiated to zero throughout
the dataset whenever the node is set to one can be safely pruned.
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Proof The candidate parent set Πi cannot explain Vi in this configuration as there is no instance in
the data file to indicate that Πi affects the values of Vi.

Theorem 5 Given a node Vj and some ε ∈ R+, a candidate parent set Πi with its penalty term
greater than the sum of the score of the null parent set and ε can be safely pruned.

Proof The null set is a subset of all candidate parent sets and by Lemma 2 any candidate parent set
with a score exceeding the score of the null parent set can be safely pruned. Consider the definition
of BIC for a parent set Πi for node Vi, σ(Πi) = −L(θi) + t(Πi) ·w. Let us have a candidate parent
set with 2 or more parents, and with its penalty term greater than the score of the null parent set for
Vi, σi({}). Such a parent set will score lower than the null parent set as log-likelihood is negative
and can be safely pruned; i.e., t(Πi) · w > σi({}) + ε ⇒ −L(θi) + t(Πi) · w > σi({}) + ε ⇒
σ(Πi) > σi({}) + ε.

3.3 Algorithm for εBNSL

Here we give our overall algorithm for εBNSL, a principled way to automatically select between
full CPTs and noisy-OR relations, given a dataset and an approximation factor ε.

• Step 1. Determine the BIC scores when fitting a full CPT for all candidate parent sets that
could not be pruned with pruning rules from (Liao et al., 2019) using Equation 1.

• Step 2. Determine the BIC scores when fitting a noisy-OR relation for all candidate parent
sets that could not be pruned using our pruning rules in Section 3.2. Here, the noisy-OR
parameters are fit using Algorithm 1, which minimizes the KL divergence between the full-
CPT and the noisy-OR CPT. These parameters are used to compute the noisy-OR BIC score.

• Step 3. Merge these two score sets, using pruning rules Lemma 2 and Theorem 3, into a list
of scores for candidate parent sets for each node in the dataset. During merging scores of a
node Vj , we have to examine only cases where a candidate parent set Πj belongs to the set of
BIC scores and its superset Π′j belongs to the noisy-OR BIC scores and vice versa.

• Step 4. The scores obtained in Step 3 are used to learn the set of credible networks using a
developmental version of GOBNILP (Cussens and Bartlett, 2012), gobnilp dev (Liao et al.,
2019), which can be used to solve the εBNSL problem and collect all the networks in the
credible set for a given approximation factor.

4. Experimental Evaluation

In this section, we show the accuracy of Algorithm 11 in computing the noisy-OR parameters for
synthetic BNs with embedded noisy-OR relations. We also show significant presence of noisy-OR
relations in standard benchmark networks. Finally, we test the performance of our learned networks
against ground truth networks. All experiments are conducted on computers with 2.2 GHz Intel
E7-4850V3 CPUs. Each experiment is limited to 64 GB of memory and 24 hours of CPU time.

1. Code available at https://github.com/CharupriyaSharma/eBNSLNoisyOR
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Parent N = 100 N = 500 N = 1000
Size KL EM KL EM KL EM

2 0.16 1.07 0.07 1.07 0.05 1.00
3 0.21 1.18 0.09 1.11 0.07 1.07
4 0.27 1.04 0.11 1.27 0.07 1.26
5 0.25 1.50 0.11 1.54 0.08 1.57
6 0.34 1.99 0.16 2.04 0.10 2.06
7 0.41 2.09 0.24 2.03 0.16 1.99

Parent N = 100 N = 500 N = 1000
Size KL EM KL EM KL EM

2 0.04 0.05 0.01 0.01 0.00 0.01
3 0.13 0.32 0.02 0.05 0.01 0.03
4 0.33 1.32 0.06 0.24 0.03 0.12
5 1.02 4.91 0.18 1.20 0.07 0.55
6 1.33 9.02 0.33 3.48 0.16 2.06
7 2.54 12.08 1.07 11.68 0.60 6.55

Table 1: (Left) Median relative error in noisy-OR parameters and (right) median conditional KL
divergence of noisy-OR CPTs learned by Algorithm 1, denoted KL, and the expectation-
maximization algorithm, denoted EM, from ground truth for various parent set sizes.

4.1 Recovery of Noisy-ORs in Synthetic Datasets

To evaluate the accuracy of Algorithm 1 in finding the noisy-OR parameters and minimizing condi-
tional KL divergence, we used synthetic BNs which consisted of a single noisy-OR. The parent set
sizes were in the range {2, . . . , 7}, all parent nodes had priors of 0.5, and the noisy-OR parameters
q = q1, . . . , q|Π| in the ground truth were uniformly sampled from the set {0.01, 0.02, . . . , 0.99}.
Thirty tests were performed at each parent set size.

We randomly generated datasets from the synthetic BNs with 100, 500 and 1000 instances, re-
spectively. Algorithm 1 was applied to a dataset and the noisy-OR parameters estimated by the
algorithm were compared against the parameters in the ground truth network (see Table 1). As well,
the conditional KL divergence was computed between the noisy-OR CPT for the estimated parame-
ters and the noisy-OR CPT for the ground truth parameters (see Equation 2). We also compared our
results against the expectation-maximization algorithm for noisy-OR proposed by Vomlel (2006),
the code for which was supplied by the author. As shown in Table 1, Algorithm 1 estimated the
ground truth parameters with significantly higher accuracy than the EM algorithm. Algorithm 1
also had much lower conditional KL divergence.

4.2 Experiments on Standard Benchmarks: Presence of Noisy-OR Relations

To evaluate the ability of our overall algorithm for εBNSL (see Section 3.3) to learn networks
with noisy-OR relations, we used standard datasets from the UCI Machine Learning Repository
(https://archive.ics.uci.edu/). The datasets used were all binary or made binary.

The overall algorithm for εBNSL was applied to a dataset to learn the set of credible networks
using a Bayes Factor, BF = 20. Out of the 13 (in a total of 16) benchmarks the algorithm was
able to solve, 9 benchmarks showed a presence of noisy-OR relations (see Table 2). Specifically,
these 9 benchmarks had 2 or more nodes that were assigned noisy-OR relations in at least 28% of the
networks in the credible set. Also, 7 benchmarks had at least one node that was assigned a noisy-OR
relation in all of the networks in the credible set. Note that some benchmarks, such as hepatitis and
parkinsons, select noisy-OR relations for around half of their nodes, which shows that using only
full CPTs could have resulted in overfitting. Further, optimal BNs containing noisy-OR relations
were consistently found to have better scores than that of optimal networks found using only full
CPTs. We also examined the effectiveness of the pruning rules (Steps 2 and 3 of the algorithm).

9
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Dataset n N nodes ave. max.

adult 14 32,561 0 0.0 0.0
nltcs 16 3,236 0 0.0 0.0
msnbc 17 58,265 0 0.0 0.0
zoo 17 101 7 41.9 99.4
letter 17 20,000 OT OT OT
hepatitis 20 155 10 76.9 100.0
parkinsons 23 195 11 51.2 100.0
sensors 25 5,456 OT OT OT

Dataset n N nodes ave. max.

autos 26 159 13 76.0 100.0
horse 28 300 3 97.4 100.0
flag 29 194 10 77.6 100.0
wdbc 31 569 OT OT OT
soybean 36 266 9 86.1 100.0
alarm 37 1,000 2 28.8 56.4
bands 37 277 8 63.4 100.0
spectf 45 267 0 0.0 0.0

Table 2: Total number of nodes where a noisy-OR relation is selected (nodes) and average (ave.)
and maximum (max.) percentage of networks in the set of credible networks that select
noisy-OR relations for these nodes, for various benchmarks with n nodes and N instances
in the dataset. OT indicates a dataset that could not be solved within the time limit.

On these benchmarks, the rules safely pruned away from 89.17% to 99.99% of the candidate parent
sets, showing that the pruning rules are highly effective.

4.3 Performance on Ground Truth Networks

To further evaluate our overall algorithm for εBNSL (see Section 3.3), we used real-world Bayesian
networks from the Bayesian Network Repository (www.bnlearn.com/bnrepository). The variables
in the networks were made binary and their corresponding CPTs compressed (see Table 3; BNs
without a b suffix were already binary). From each ground truth network, we randomly generated
datasets with 100, 500, and 1000 samples. We then ran our structure learning algorithm on the
datasets to learn the set of credible networks, fixed the CPT parameters using maximum likelihood
estimation and measured relative inference error against the ground truth network.

Table 3 shows the median relative inference error of the best scoring and the worst scoring net-
works in the set of credible networks, as well as that of the best-scoring network with full CPTs (i.e.,
not containing noisy-OR relations), against that of the ground truth network. Overall the inference
error of the best scoring network is comparable to that of the full CPT. Somewhat surprisingly, the
error for the worst scoring network can be smaller than for the best scoring network or the full CPT.

To perform inference on our learned set of credible networks, we generated evidence for 10% of
nodes in the network. The nodes were randomly selected. For one trial, we selected a state of every
node in the evidence, which was set according to the node’s posterior probability distribution in the
model, conditional on the evidence observed up till this point. Then, we computed the posterior
probability distributions over the non-evidence nodes for our learned network and for the ground
truth network. The inference errors were the differences between these values. We repeated the
described procedure 1000 times for each of the networks. Inference was performed using JavaBayes
(www.cs.cmu.edu/∼javabayes), which was extended to take in an evidence file and two BNs for
comparison. Our results our consistent with Zagorecki and Druzdzel (2013), who show that in
three real-world Bayesian networks, noisy-OR/MAX relations were a good fit for up to 50% of
the CPTs in these networks and that converting some CPTs to noisy-OR/MAX relations gave good
approximations when answering probabilistic queries.
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Bayesian N = 100 N = 500 N = 1, 000
network n best worst CPT best worst CPT best worst CPT

earthquake 5 0.03 0.91 0.00 0.02 0.98 0.00 0.26 0.53 1.00
survey b 6 0.05 0.69 0.00 0.02 0.74 0.00 0.01 0.75 0.00
asia 8 0.04 0.13 0.92 0.04 0.92 0.02 0.02 0.90 0.08
sachs b 11 0.43 0.68 0.18 0.70 0.60 0.21 0.68 0.62 0.01
child b 20 0.05 0.91 0.01 0.05 0.88 0.07 0.05 0.85 0.04
insurance b 27 0.67 0.72 0.70 0.65 0.71 0.68 0.65 0.68 0.68
alarm b 37 0.04 0.99 0.01 0.08 0.99 0.05 0.05 OT 0.06

Table 3: Median relative inference error for the best and worst scoring network in the set of credible
networks learned by Algorithm 1 and the full CPT against the ground truth network. The
datasets with N instances were generated from various ground truth BNs with n nodes.

5. Conclusion

Existing successful approaches for learning Bayesian networks from data use the well-known score-
and-search approach. We extend the score-and-search approach to simultaneously learn the best
global structure and the best local structure when the choice is either a full CPT or a noisy-OR
relation for a candidate parent set of a node in the network. We show how to score a causal noisy-
OR relation for a candidate parent set by fitting the best possible noisy-OR to the data, and we
show how to effectively prune the search space while maintaining the optimality of the networks
that are learned. Our experimental results provide evidence of the effectiveness of our approach. In
particular, it was found that noisy-OR relations appeared in a significant proportion of the learned
networks, for well known datasets.
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