
Learning to Search More Efficiently from Experience: A Multi-Heuristic
Approach

Sandip Aine
Indraprastha Institute of Information

Technology, New Delhi, India
sandip@iiitd.ac.in

Charupriya Sharma
Indraprastha Institute of Information

Technology, New Delhi, India
charupriya11037@iiitd.ac.in

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, PA, USA
maxim@cs.cmu.edu

Abstract

Learning from experience can significantly improve the per-
formance of search based planners, especially for challenging
problems like high-dimensional planning. Experience Graph
(E-Graph) is a recently developed framework that encodes
experiences, obtained from solving instances in the past, into
a single bounded-admissible heuristic, and uses it to guide
the search. While the E-Graph approach was shown to be
very useful for repetitive problems, it suffers from two is-
sues. First, computing the E-Graph heuristic is time consum-
ing as it maintains the bounded admissibility constraints. Sec-
ond, a single heuristic can get stuck in a local minimum, and
thereby, degrade the performance. In this work, we present
an alternative approach to improving the runtime of search
from experience, based on a recently developed search algo-
rithm Multi-heuristic A* (MHA*). This framework provides
an improvement over the E-Graph planner for two reasons: a)
MHA* uses multiple heuristics simultaneously to explore the
search space, which reduces the probability of getting stuck
in a local minimum, and b) the heuristics in MHA* can be
arbitrarily inadmissible, which makes it very easy to compute
them. The paper describes the framework, explains how to
compute these (inadmissible) heuristics through offline and
online processing and presents experimental analysis on two
domains, motion planning for a 6D planar arm and large slid-
ing tile puzzles.

Introduction
Planners are often asked to solve a set of problems that have
some inherent similarities, for example, a robot may be re-
quired to perform several manipulation tasks in a given en-
vironment with some static and some dynamic obstacles,
or we may design a planner to solve a fixed sized sliding
tile puzzle problem. In such cases, the information acquired
by solving a subset of instances may improve the planner.
In other words, a planner can learn from experience, and
thereby improve its performance.

For graph search based planning, one way to incorporate
the learned information is to encode it as a heuristic function.
One of the recent approaches that does so is called planning
with Experience Graphs (E-Graphs) (Phillips et al. 2012).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work was supported by NSF Grant IIS-1409549 and by ARL,
under the Robotics CTA program grant W911NF-10-2-0016.

An Experience Graph GE is essentially a collection of pre-
viously planned paths. The E-graph planner uses weighted
A* (WA*) (Pohl 1970) to search the original search spaceG,
but tries to maximally reuse paths in GE . This is achieved
by modifying the heuristic function, which now drives the
search toward paths in GE , i.e., the E-Graph heuristic (hE)
prioritizes the paths on GE over G (by penalizing paths that
are not part of GE). This heuristic is computed in a manner
that preserves a chosen bounded admissibility/consistency
(i.e., hE < ε1 ∗ h0, where h0 is a consistent heuristic for the
original problem and ε1 is constant ≥ 1), which in turn en-
sures that the solutions obtained using the E-Graph planner
are provably bounded sub-optimal. Planning with E-Graphs
has been shown to be very successful for high dimensional
problems, such as single arm planning or full body manip-
ulation (Phillips et al. 2012). It has been also extended to
run as an anytime and incremental planner (Phillips et al.
2013a), to learn from demonstrations (Phillips et al. 2013b).

While the E-Graph based planning can effectively use ex-
perience to enhance performance, it suffers from two prob-
lems. First, the E-Graph planner uses the planning experi-
ence (and a given consistent heuristic function) to compute
a single heuristic function. Some recent approaches (Röger
and Helmert 2010; Aine et al. 2014) have shown that perfor-
mance of search algorithms can be improved considerably if
we simultaneously search with multiple heuristics instead of
relying on a single heuristic function. This is especially true
for hard planning problems (such as high-dimensional plan-
ning) where computing a single good heuristic is often diffi-
cult. The same phenomenon can be observed in case of the
E-Graph planner, as it can get stuck if the experience based
heuristic leads the search to a local minimum. Second, the
computation and update of the E-Graph heuristic is costly
as it needs to ensure the bounded admissibility/consistency
constraints. In particular, hE for a given state s0 is computed
using the following equation,

hE(s0) = minΠΣi=N−1
i=0 min{ε1 ∗ h0(si, si+1), cE(si, si+1)}

(1)
where Π is a path s0...sN−1 and sN = sgoal, cE denotes

the cost of an edge in the E-Graph (GE), h0 is a consis-
tent heuristic function and ε1 is a scalar ≥ 1, which is used
to penalize the paths that are not in the E-Graph. Now, this
computation does not impose much extra penalty when com-
puted as a one shot algorithm on a pre-built graph (such as
2D and 3D Dijkstra based heuristics for motion planning

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

141



problems), as we only need to alter the cost of the graph
edges which do not belong to GE and the rest of the process
remains the same. However, for problems where the search
graph is implicit and the heuristics for a state is computed
on demand when the state is visited (for example, the Man-
hattan distance or the linear conflict heuristics for sliding tile
puzzles), this computation becomes prohibitively expensive.

In this paper, we describe a learning based planner
(MHA*-L) that attempts to overcome the above mentioned
problems by using a recently developed search algorithm
called Multi-heuristic A* (MHA*) (Aine et al. 2014) as the
base level search algorithm (instead of WA*). MHA* of-
fers two advantages over WA*, that are crucial for a learn-
ing based planner. First, it uses multiple heuristics simul-
taneously to explore the search space, which reduces the
chance of getting stuck at local minima, as the search can
try to reach the goal using diverse heuristics and if any of
the heuristic functions (or a combination) can lead the search
to the goal, it can succeed. More importantly, MHA* needs
access to a single consistent heuristic to provide bounded
sub-optimal solutions, all additional heuristics can be arbi-
trarily inadmissible, which offers a lot of flexibility to design
these heuristics. If we do not need to maintain the bounded
admissibility constraints, any experience (in form of a path
Π(sA, sB) between states sA and sB) can be converted to a
heuristic using the following equation,

hA,B(s) = ε1 ∗h0(s, sA) +CE(Π(sA, sB)) + ε1 ∗h0(sB , sgoal)
(2)

where CE(Π(sA, sB)) is the cost of the path from sA to
sB obtained from experience and ε1 (≥ 1) is a factor used
to bias hA,B towards the already traversed path. As these
heuristics need not be admissible, we do not need to use
costly computation such as Eqn. 1 1

We present a learning framework that samples path seg-
ments from previously solved instances and partitions them
offline using a clustering algorithm. When asked to solve
a new instance, the planner picks up the best experience
choices (path segments) from each cluster in terms of cost
to compute the inadmissible heuristics (using Eqn. 2). These
heuristics are then used by the MHA*-L framework to com-
pute the plans. On one hand, the MHA*-L planner offers a
flexible approach to incorporate learning in planning (com-
pared to the E-Graph planner). On the other hand, it can
also be viewed as a framework for generating high quality
heuristics for a MHA* planner. In (Aine et al. 2014), dif-
ferent inadmissible heuristics were used for different prob-
lems, designed in a somewhat ad-hoc manner. In contrast,
the MHA*-L framework provides a systematic approach for
generating inadmissible heuristic using experience.

We investigate the performance of this framework
(MHA*-L) on two problem domains, 6D arm planning (for
the PR2 robot) and large sliding tile puzzles. Comparisons
with WA*, MHA* without learning (MHA*-W) and the E-
Graph planner (for the robot arm planning) show that the
proposed approach is indeed very efficient in solving hard
planning problems.

1Note that, for both E-graphs and MHA*-L, h0 should be able
to compute the cost-to-go heuristic between any two states, and not
just between a state and the goal.

Algorithm
The MHA*-L planner works in the following manner. We
start with a database of path samples (Π(sA, sB)) obtained
from previous planning queries (or from demonstrations).
Next, we partition this database (offline) according to the
number of heuristics (n) we want to compute, using some
similarity function. Now, given an instance we compute an
inadmissible heuristic from each partition (h1, . . . , hn) to
ensure diversity (online). Finally, we run MHA* with h0 as
the anchor heuristic (as described in (Aine et al. 2014)) and
h1, . . . , hn as the additional inadmissible heuristics. In Al-
gorithm 1, we include the high level calls for the offline and
online tasks for our planner.

Algorithm 1 MHA*-L: Overview

1: procedure OFFLINEPROCESSING
2: PLDB ← BUILDDATABASE (S, k) . S: set of

solved instances, k: samples per plan
3: PARTITIONDATABASE (PLDB,n) . n: number of

additional heuristics
4: procedure ONLINEPROCESSING
5: Input: Problem instance Pin, consistent heuristic h0

6: FINDHEURISTICCANDIDATES (Pin, n)
7: PLANWITHMHA*
8: if plan successful then
9: UPDATEDATABASE

Plan Database Generation and Partitioning
The first component of this system is a database of com-
plete/partial plans. The database creation part is very sim-
ple, we start with a set of previously computed plans. From
each plan, we sample a few (say a pre-decided constant k)
path segments and include them in the plan database (PLDB)
where each entry is a feasible path segment Π(sA, sB) and
the cost of that C(Π(sA, sB)). Including partial paths in the
plan database increases the coverage of our learning based
heuristics, as now the number of entries in the database is
not restricted to the number of previously solved instances.
However, we may not want to include paths that are that are
too small, for this we only sample path segments of length
greater than half of the actual solution length (for a candidate
plan of length x, we randomly choose k−1 partial segments
of length l, where l is a random number between x/2 and x,
and include the complete plan as the kth segment).

Next, we partition this database into n-parts using the sim-
ple k-median clustering method, where n is the number of
inadmissible heuristics used for MHA*-L. For clustering,
we need to compute a similarity measure which compares
to paths in the PLDB. For this, we use the dynamic time
warping similarity metric (DTW) (Sakoe and Chiba 1990)
with the distance between two intermediate points computed
using the heuristic function (h0). The idea behind cluster-
ing the database is to ensure maximal diversity among the
heuristics which in turn reduces the probability of all of them
getting trapped in similar local minima. We also note the
centroid of each cluster formed so that we can quickly up-

142



Algorithm 2 MHA*-L: Offline tasks

1: procedure BUILDDATABASE(S, k)
2: PLDB ← ∅
3: for all plan P ∈ S do
4: for i = 1 . . . k − 1 do
5: Randomly sample a plan segment p from P
6: PLDB ← PLDB ∪ p
7: PLDB ← PLDB ∪ P
8: procedure PARTITIONDATABASE(PLDB,n)
9: Compute distance matrix for PLDB using DTW

10: Partition PLDB in n clusters using k-median
11: Store the centroid for each cluster PLDBi

date the database when a new plan segment is computed. In
Algorithm 2 we include the pseudocode for these steps.

Algorithm 3 MHA*-L: Online tasks

1: procedure FINDHEURISTICCANDIDATES(Pin, n)
2: for i = 1, . . . , n do
3: hci ← arg minΠ(sA,sB){hA,B(sstart): ∀ Π ∈
PLDBi }

4: procedure PLANWITHMHA*
5: INITIALIZESEARCHES()
6: while sgoal not expanded do
7: for i = 1, 2, . . . , n do
8: if ith search can satisfy the ε1∗ε2 bound then
. See (Aine et al. 2014) for details

9: s← OPENi.TOP()
10: if s == StartState(hci) then
11: OPENi ← ∅
12: Update g(EndState(hci))
13: Replace hi with h0

14: Insert EndState(hci) in OPENi

15: else
16: Expand state from the ith search
17: else
18: Expand state from the anchor search
19: procedure UPDATEDATABASE(Pn)
20: for i = 1 . . . k − 1 do
21: Randomly sample a plan segment p from Pn

22: PLDBp ← Cluster with centroid closest to p
23: PLDBp = PLDBp ∪ p
24: PLDBn ← Cluster with centroid closest to Pn

25: PLDBn = PLDBn ∪ Pn

26: Re-cluster PLDB if necessary

Heuristic Generation, Search and Database Update
Pseudocodes for the online tasks of our planner is included
in Algorithm 3. When the planner is asked to solve a prob-
lem instance Pin (with sstart, sgoal and a consistent heuris-
tic h0), we first decide a candidate plan segment from each
cluster (PLDBi) using which we will compute hi. For this,
we pick the path segment (hci) which has the minimum
hA,B(sstart), according to Eqn. 2 (sA is the start state and

sB is the end state of the segment).
Once a candidate segment is selected, hi for any state s is

computed directly using Eqn. 2. We run MHA* using h0 for
the anchor search and n additional heuristics (one heuristic
per cluster). In (Aine et al. 2014), two MHA* algorithms are
described, IMHA* and SMHA*. While the MHA*-L frame-
work can work with both the planners, in this work, we only
consider the shared version of MHA* (as it was shown to be
the better algorithm). Throughout the rest of the paper, we
will use the term MHA* to refer to the SMHA* algorithm.

The parts where we deviate from the original MHA*
are, i) we run the anchor search with an inflated heuristic
(ε1 ∗ h0), but other searches are run without inflation as hi
computed using Eqn. 2 is already inflated, and ii) in lines 10-
14, which says the if when we reach the start state (sA) of
hci we take a shortcut to the end state sB , by adjusting its g
value using C(hci) and starting a new search from sB with
heuristic h0 instead of hi. This ensures that once we find a
path to the candidate segment we do not try to traverse the
segment again, instead the search now tries to compute a
path from end of this segment to the goal.

Note that a plan computed by this method is bounded by
ε1 ∗ ε2 sub-optimality factor (same as MHA*). When we
successfully compute a new plan, we again sample k random
segments from the plan and add them to their closest cluster
in PLDB. If the database has grown quite a bit from the last
clustering, we re-cluster it.

Experimental Results
6D Robot Arm Planning
In this domain, we consider a 6-DOF robot arm with a fixed
base situated at the center of a 2D environment with ob-
stacles. The environment is the same as described in the
publicly available SBPL library (http://www.sbpl.net). The
planning objective here is to move the end-effector from its
initial configuration to the goal configuration following a
smooth path while avoiding obstacles. An action is defined
as a change of a global angle of any particular joint. We com-
pare the WA* (without state re-expansions (Likhachev, Gor-
don, and Thrun 2004)) planner, the MHA* planner without
learning (MHA*-W), the E-Graph planner and the learning
based MHA* planner (MHA*-L).

WA* E-Graphs MHA*-W MHA*-L
Instances Solved 41 49 70 84

Run time 1.44 0.97 1.29 1.00
Solution Costs 0.96 1.12 1.07 1.00

Table 1: Results for the arm planner, comparing WA*, E-Graphs,
MHA*-W and MHA*-L. Run times and solution costs for each al-
gorithm are reported as ratios over MHA*-L numbers for instances
that are solved by both the planners.

For the first experiment, we generated a test environment
discretized into a 200 × 200 2D grid with three randomly
placed obstacles (one circular, one T-shaped and one rect-
angular) and created a test suite of 100 random start-goal
pairs. We computed the consistent heuristic (h0) by run-
ning a 2D Dijkstra search from goal to start. For MHA*-
W, we generated 4 additional heuristics by choosing 4 ran-
dom way-points on the grid (s1, . . . , s4) and directing the

143



search through the chosen points (hi(s) = h0(s, si) +
h0(si, sgoal), i = 1, . . . , 4). We used the plans computed
by the WA* to form the initial databases for the MHA*-L‘
and the E-Graph planner. For MHA*-L database, we used 5
segments from each plan, we then clustered the database in 4
parts using the DTW metric. During the run, whenever a new
instance was solved by the E-Graph or the MHA*-L planner,
we added the new paths to their respective databases. We
used a target bound of 10, for WA* we set ε = 10, whereas
for E-Graphs and MHA*(s) we set ε1 = 5 and ε2 = 2. We
used a time limit of 60 seconds for solving each instance.
The results of this experiment are shown in Table 1, which
clearly highlight the efficacy of MHA*-L over the other al-
gorithms. We observe that the E-Graphs perform better than
WA* but not than MHA*-W, which is expected, as the ran-
dom selection of start and goal states affected the E-Graph
planner (the tasks were not necessarily repetitive), in con-
trast MHA* could solve more problem even without any
learning. However, when we combine the learning with the
MHA* approach, we get the best results (MHA*-L domi-
nates MHA*-W in all three metrics), indicating that learn-
ing can indeed help in designing better heuristics for MHA*
(when compared to the ad-hoc approaches).

Database % used 25 50 100
Instances solved 63 81 88

No. of heuristics 4 8 16
Instances solved 88 100 100

Table 2: Impact of amount of learning and number of heuristics
on MHA*-L planner for robot arm planning.

In the next two experiments, we tested the impact of the
amount of learning and the number of heuristics on the per-
formance of MHA*-L. For this, we built a database by col-
lecting sampled segments from all the instance solved in
the first experiment. Next, in i) we compute 4 inadmissible
heuristics using 25, 50 and 100% of the complete database,
and in ii) we use the total database and compute 4, 8 and 16
heuristics. We stopped the online database updates for both
i) and ii), and ran MHA*-L on a new test suite of 100 random
instances (start-goal pair) with bound 10 and time limit 60
secs. The results of these experiments are shown in Table 2,
which show that i) with fixed number of heuristics, learning
from larger database increases the success rates, and ii) with
the same amount of learning, using more heuristics improves
the performance. In fact, with 8 and 16 heuristics, MHA*-L
was able to solve all the instances within the time limit.

Sliding Tile Puzzles
In this section, we present the experimental results for large
sliding tile puzzles (8 × 8, 9 × 9 and 10 × 10). For this
domain, we only compare WA*, MHA*-W and MHA*-L, as
the E-Graph planner was very inefficient (computing the ε-
admissible E-Graph heuristic took too much time, and thus,
none of the instances were solved within the time limit).

For the first experiment, we randomly generated 100 solv-
able instances (for each size). We used the Manhattan dis-
tance (MD) plus linear conflicts (LC) as the consistent
heuristic (h0 = MD + LC). For MHA* (both variants),
we used a set of 5 heuristics (anchor + 4 inadmissible). For

Instances Solved Run Time Solution Cost
Size WA* MHA*-W MHA*-L WA* MHA*-W WA* MHA*-W
8X8 65 77 91 0.93 1.04 1.46 1.21
9X9 32 59 88 0.98 0.95 1.17 1.06

10X10 11 19 35 0.90 1.04 0.93 1.06

Table 3: Results for the sliding tile puzzles comparing WA*,
MHA*-W and MHA*-L. Run times and solution costs (for WA*
and MHA*-W) are reported as ratios over MHA*-L numbers for
instances that are solved by both the planners.

MHA*-W, the additional heuristics were obtained using the
same scheme as described in (Aine et al. 2014), we com-
puted the number of misplaced tiles (MT ), and added MD,
LC and MT with random weights between 1.0 and 5.0. For
MHA*-L, similar to arm planning, we used the problem in-
stances solved by WA* to create the initial database (for each
problem size), and clustered them in 4 parts to compute the
inadmissible heuristics. During the run, we also did the on-
line updates for each successful plan (by MHA*-L). We use
a bound of 10 (ε = 10 for WA*, ε1 = 5 and ε2 = 2 for
MHA*-W and MHA*-L), and a time limit of 180 seconds.
We include the results of this experiment in Table 3. The re-
sults clearly show that MHA*-L dominates both WA* and
MHA*-W, with the performance gap (in terms of instances
solved) increasing with larger (and thus harder) problems.

Database % used 25 50 100
Instances solved 21 39 46

No. of heuristics 4 8 16
Instances solved 46 66 59

Table 4: Impact of amount of learning and number of heuristics
on MHA*-L planner (10× 10 puzzle).

Next, we tested the impact of learning and number of
heuristics on MHA*-L (Similar to the arm planning). We
collected all the instances solved in the first experiment and
built an experience database, and performed two experi-
ments, i) by computing 4 inadmissible heuristics learned by
using 25, 50 and 100% of the database, and ii) by computing
4, 8 and 16 heuristics from the total database. For both i) and
ii), we ran MHA*-L on a new test suite of 100 10× 10 puz-
zles with bound 10 and time limit 180 secs and stopped the
online update of the databases. The results of these tests are
shown in Table 4, which shows the i) for the same number
of heuristics, larger database helps solving more problems
(same observation as arm planning), and ii) the success rate
improves with increase in the number of heuristics from 4
to 8, but degrades thereafter (different from arm planning),
mainly due to the fact that with 16 heuristics, the heuristic
computation time starts to dominate the planning time.

Conclusions

We presented a learning based planning framework (MHA*-
L) that uses previously generated plans to compute multi-
ple heuristics and then uses those heuristics to run a multi-
heuristic search. Experimental results obtained for two do-
mains demonstrate that the proposed planner is more effi-
cient when compared to the WA*, the MHA* planner with-
out learning (MHA*-W) and the E-Graph planner.

144



References
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2014. Multi-Heuristic A*. In Robotics: Sci-
ence and Systems.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems 16. Cam-
bridge, MA: MIT Press.
Phillips, M.; Cohen, B. J.; Chitta, S.; and Likhachev, M.
2012. E-graphs: Bootstrapping planning with experience
graphs. In Robotics: Science and Systems.
Phillips, M.; Dornbush, A.; Chitta, S.; and Likhachev, M.
2013a. Anytime incremental planning with e-graphs. In
ICRA, 2444–2451.
Phillips, M.; Hwang, V.; Chitta, S.; and Likhachev, M.
2013b. Learning to plan for constrained manipulation from
demonstrations. In Robotics: Science and Systems.
Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph. Artif. Intell. 1(3):193–204.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
ICAPS, 246–249.
Sakoe, H., and Chiba, S. 1990. Readings in speech recog-
nition. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc. chapter Dynamic Programming Algorithm Op-
timization for Spoken Word Recognition, 159–165.

145




